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SUMMARY 

A generalized  subsonic  unsteady  aerodynamic  kernel  function, valid for both  
growing  and  decaying osc i l la tory   mot ions ,  is developed  and applied i n  a modified 
f l u t t e r   a n a l y s i s  computer  program to  so lve   for   boundar ies  of cons tan t  damping r a t io  
as w e l l  as the f l u t t e r  boundary.  Results are given for  the v a r i a t i o n  of genera l ized  
aerodynamic forces w i t h  the  damping ratio.  Some comparisons are made with  an alter-  
na t ive  method of obta in ing   genera l ized   forces  based on r a t i o n a l   f u n c t i o n  approxima- 
t i o n s  of simple harmonic forces. For decaying  motion,  instances were observed  of 
unexpected  looping  and  spiraling  of  generalized  aerodynamic forces c a l c u l a t e d   i n   t h e  
complex plane a t  high  reduced  frequencies.  Similar sp i r a l inq   behav io r  w a s  found f o r  
two-dimensional  flow  for  which  convergence of the r e s u l t s   w i t h   r e s p e c t  t o  downwash 
co l loca t ion  was proven. Rates of change  of  damping ra t ios  with respect to  dynamic 
p r e s s u r e   n e a r   f l u t t e r  are s u b s t a n t i a l l y  lower from the generalized-kernel-function 
ca lcu la t ions   than  from the  conventional  velocity-damping (V-g) calculat ion.   For   the 
DAST ARW-1’ , ca lcu la ted   va lues  of both damping ra t ios  and  frequencies  agreed  with  the 
in- f l igh t   exper imenta l   va lues  for Mach numbers approaching   the   f lu t te r   condi t ion .  
The aerodynamic  forces from the rat ional   funct ion  approximation  used  in   control  
theory   for   s -p lane   ana lys i s   agreed   fa i r ly  w e l l  wi th   kerne l - func t ion   resu l t s   except  
f o r   s t r o n g l y  damped motion a t  combinations  of  high  (subsonic) Mach number and  reduced 
frequency. 

INTRODUCTION 

C o n s i d e r a b l e   f l u t t e r   a n a l y s i s   h a s  been  accomplished  using  the  subso$.c  kernel 
f u n c t i o n   t h a t   o r i g i n a t e d  from the l i f t ing-sur face- theory  work of H. G. Kussner  (1940) 
t h a t  is  based on the   l i nea r   t heo ry  of p o t e n t i a l  flow.  Watkins, Runyan,  and Woolston 
(1955) cast t h e   k e r n e l   f u n c t i o n   i n  a form amenable to  automated  computation. The 
func t ion  w a s  developed  by  assuming simple harmonic (i .e., constant-amplitude ) motion 
t h a t  had continued for a n   i n f i n i t e  time. Thus, i n  a f l u t t e r   a n a l y s i s   t h e   r e s u l t i n g  
aerodynamic  forces are valid only  a t  t h e   f l u t t e r  boundary,  but are n o t   s t r i c t l y   v a l i d  
for growing or decaying  motion a t  speeds  above  and  below a f l u t t e r  boundary. 

Numerous analyses  have  attempted to  f o r e c a s t  the n e a r - f l u t t e r  and  approach-to- 
f l u t t e r   b e h a v i o r  of l i f t i n g   s u r f a c e s .  Such e f f o r t s  beqan a t  least  as e a r l y  as t h e  
velocity-damping (V-g) s o l u t i o n s  of Smilg  and Wasserman (1942)  and  continue  today i n  
the  ra t ional   funct ion  approximation (RFA) descr ibed  by  Sevart   (1975)  and appl ied ,  for  
example,  by Abel ( 1  979).  

The p resen t  report gene ra l i zes  the subsonic   kerne l   func t ion   in to  the s-plane  for  
a r b i t r a r y   v a l u e s  of the  complex  reduced  frequency.  This  kernel  function is then 
appl ied  to  analyze  the  near-f lut ter   behavior   of   several   configurat ions  using  the 
equat ions of dynamic  equilibrium of Cunningham (1978). The c a l c u l a t i o n s  were c a r r i e d  
o u t  by a modified  version of the f l u t t e r   a n a l y s i s  computer programs described by 
Desmarais and  Bennett  (1978). An appendix describes the   eva lua t ion  of the   ke rne l  
function  by  an  accurate series approximation  for which the computation is economical. 
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The p r e s e n t   r e s u l t s  are compared with  both the n e a r - f l u t t e r  results from the V-g 
method  and the results from RFA aerodynamics in   con t ro l   t heo ry .  

SYMBOLS 

speed of  sound 

generalized  aerodynamic  force,  equation ( 5 )  

c o e f f i c i e n t s  of the rat ional   funct ion  approximation (RFA) ,  equation ( 6 )  

root  semichord,  often  reference  length 

Ai j 

An 

bo 

C l i f t - cu rve   s lope  
La 

AC l i f t i n g   p r e s s u r e   c o e f f i c i e n t   f o r   u n i t   a m p l i t u d e  of mode j , Ap . / ( p v  /2 )  2 
3 

f cycl ic   f requency of motion 

g i  

9 root-findinq  increment  added  to gi 

mechan ica l   hys t e re s i s   s t ruc tu ra l  damping c o e f f i c i e n t  of mode i 

h i  (x, y )  mode shape of mode i 

i imaginary  uni t ,  \1-1 

I m (  1 imaginary  par t  of ( 1 

k WbO reduced  frequency, - wR and - V V 

complex  reduced  frequency,  k( 1 + is) 
K(M,k,xo,yo) genera l ized   kerne l   func t ion   for  real  k and f o r  k replaced  by 

k(1  + it) 
- 
K(M,k,xo,yo)   kernel   funct ion  with  s ingular   factor  removed, equation ( 3 )  

R r e fe rence   l eng th ,   op t iona l ly   equa l   t o  bo 

mi 

M Mach number of undisturbed stream 

N number of modes i n   a n a l y s i s  

general ized mass f o r  mode i 

Ap( x,y, t )  l i f t i n g   p r e s s u r e   d i s t r i b u t i o n  
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genera l ized   coord ina te  of mode i 

rat ional   funct ion  approximation  €or   any Aii, equation ( 6 )  
- 

B\lYo2 + z 
2 

real p a r t  of ( ) 

ra t ional   funct ion  approximation 

= i w ( 1  + i r )  c o e f f i c i e n t  of t for   general   exponent ia l   t ime-varying 
motion est; also the  Laplace  transform  variable 

= SR/V 

planform  area of l i f t i n g   s u r f a c e  

time 

= (-xo + "fi21Yoll 

speed of undisturbed  flow 

w ( x , y , t )  downwash d i s t r i b u t i o n ,   p o s i t i v e   w i t h  z 

orthogonal,  right-handed  coordinates  nondimensionalized by R, x p o s i t i v e  
downstream, y p o s i t i v e  on the  right-hand  half-span, z p o s i t i v e  up 

= x - t ;  

= y - r l  

angle of a t tack ,   p i tch   d i sp lacement  

-m - 

aerodynamic  lag  parameters  in  equation ( 6 )  

logarithmic  decrement of o s c i l l a t o r y  motion,  posit ive  for  decay 

damping r a t i o  of control   theory,   cos  8 

damping r a t i o  used  herein,   def ined  in   equat ion ( 9 )  

dummy v a r i a b l e   f o r  y 

angle  from negat ive real s - a x i s   t o  s of  motion (see sketch on p. 5 )  

mass ratio, wing mass divided by the  mass of a i r  i n  a t r u n c a t e d   c y l i n d r i c a l  
cone t h a t  j u s t  encloses   the wing planform 

dummy v a r i a b l e   f o r  x 
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P a i r  dens i ty  

w c i rcu lar   f requency  of motion,  radians/sec 

w i 
w 
0 

w a 

natura l   f requency  of mode i 

base or reference  frequency,  equations ( 4  1 

natura l   f requency  of t o r s i o n  mode 

ANALYSIS 

Downwash Integral   Equation  and  Kernel  Function 

me phenomenon s tudied   here  is that of a t h i n   l i f t i n g   s u r f a c e   o s c i l l a t i n g  normal 
t o   t h e   d i r e c t i o n  of a compressible  flow. The l i n e a r ,  small dis turbance  equat ions  of  
potent ia l   f low  a long  with the associated  boundary  conditions are used to  ana lyze   th i s  
phenomenon. 

Based on the  pioneer work of KGssner ( 1  9401, t h e   i n t e g r a l   e q u a t i o n   t h a t  relates 
downwash and l i f t i n g   p r e s s u r e   d i f f e r e n c e  on a p l ana r   l i f t i ng   su r f ace   can  be p u t   i n  
the  form 

where  K(M,k,xo,yo) is the   ke rne l   func t ion   r e l a t ing   t he  downwash produced a t  x,y 
d u e   t o   u n i t   l i f t i n g   p r e s s u r e  a t  5 ,n. 

Watkins, Runyan,  and  Woolston (1955) expressed the subsonic  planar ( z  = 0)  
kerne l   func t ion  as 

where X ,  the  streamwise v a r i a b l e  of i n t e g r a t i o n   f o r  x - 5, is p o s i t i v e  downstream. 
me i n t e g r a l   i n   e q u a t i o n  ( 2 )  sums up t h e   e f f e c t s  on the  downwash a t  x,y a t  the  
p r e s e n t   i n s t a n t  of a l l  pressure  dis turbances which o r i g i n a t e d  a t  over a l l  p a s t  
time. 

Carrying  out the d i f f e r e n t i a t i o n  of equation (21, t ak ing   the  limit, and in t e -  
g r a t i n g  by parts  changes  the form of t h e   p l a n a r   k e r n e l   f u n c t i o n   t o  
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where 

i(M,k,xo,yo) = exp(-ikx 1 
0 

The c a l c u l a t i o n  of is descr ibed i n  the  appendix. 

Consider now the   gene ra l i za t ion  from simple harmonic  (constant-amplitude)  motion 
with time va r i a t ion   exp  i w t  (real  a )  t o  growing  and  decaying o s c i l l a t o r y  motion 
with time var ia t ion   exp  s t  (complex s ) .  Such motions  have come t o  be termed 
"s-plane  motions,"  where i n   t h e  complex  s-plane, s = i w  is the  posi t ive  imaginary 
ax i s .  As i n d i c a t e d   i n   t h e  accompanying  sketch,  for  growing  motion  the real p a r t  of 
s i s  p o s i t i v e  and for  decaying  motion  the real p a r t  of s is negative.  

Decaying 
motion 

s =  

The gene ra l i za t ion  to growing  and  decaying  motion  from  harmonic  motion is accom- 
p l i shed  by replacing  the  f requency w by w ( 1  + i t ) ,  where 5 is a motion  damping 
r a t i o   t h a t  is p o s i t i v e   f o r  decay. The parameter 5 = & / Z I T ,  where 6 is the 
logarithmic  decrement of motion, as described,  for  example,   in Cunningham ( 1  978 1. 
The sketch shows t h a t   t h i s   d e f i n i t i o n  of the damping r a t i o  is equ iva len t  t o  
r; = - R e ( s ) / I m ( s )  = c o t  8 ,  i n   c o n t r a s t   t o   t h e  damping r a t i o  used in   con t ro l   t heo ry ,  

r; = - R e ( s ) / l s  I = cos 8 = ;/(>-. The s e l e c t i o n  of the  cotangent   funct ion to  
de f ine   t he  damping ratio simplifies the   modi f ica t ions   requi red   in   the   f lu t te r   ana ly-  
sis computer  program  described below. For small damping r a t i o s   t h e  t w o  d e f i n i t i o n s  
are asymptotic. For  instance,   with 8 = 7 0 ° ,  t h e y   d i f f e r  by only 6 percent.  

- 
- 

- 

The i n t e g r a l   i n   e q u a t i o n  (3) e x i s t s   f o r  growing  and for  constant-amplitude 
motion,  but  for  decaying  motion  the  integral  is improper.  This  problem is surmounted 
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as follows.  For  both  growing  and  constant-amplitude  motion,  the  integrals  defining 
the   ke rne l   func t ion  are computable.  These  integrals are recognized as representa-  
t i o n s  of a n a l y t i c   f u n c t i o n s ,  namely,  Bessel  and Struve funct ions.   These  analyt ic  
functions  can  then be used t o   e v a l u a t e   t h e   q u a n t i t y   r e p r e s e n t e d  by t h e   i n t e g r a l s   f o r  
decaying  motion  even  though the i n t e g r a l s  are nonconvergent.  This  use of a n a l y t i c  
cont inuat ion is described,  for  example,  by Carrier, Krook,  and  Pearson  (1966)  and 
c i t e d  by  Edwards (1977). The evaluat ion of t he  improper integral   for   decaying  motion 
is descr ibed  in   the  appendix.  

For the p resen t   r epor t   t he  FAST (Flutter  ‘Analysis  System)  computer  program of 
Desmarais and  Bennett  (1978) w a s  modif ied  to   incorporate  the general ized  kernel   func-  
t i o n .  The resul t ing  aerodynamic  forces  are those  corresponding  to  the  user-selected 
3 .  The 12-term exponent ia l  series approximation D12.1 (see appendix) of Desmarais 
(1  982) w a s  used ,   in   genera l .   Severa l   checks   to   ver i fy   accuracy  were made with  the 
24-term series D24.2. As shown in  the  appendix,   approximation D l  2.1 is a c c u r a t e   f o r  
growing  and  decaying  motion in   the  s-plane  extending a t  least  45O on both  s ides  of 
the  imaginary  s-axis  that  represents  harmonic  motion. 

- 

Equations of  Dynamic Equilibrium 

In  equat ion ( 2 2 )  of  Cunningham (1978),   the  equations of equi l ibr ium are given 
f o r  growing  and  decayinq  motion. An equi l ibr ium  condi t ion   ex is t s  when the complex 
s t r u c t u r a l   f o r c e s  are balanced by the complex  unsteady  aerodynamic  forces.  Solutions 
can be obtained by an app l i ca t ion  of the familiar V-g root-f inding  technique.   In  
t h i s  method aerodynamic  forces are ca l cu la t ed   fo r   an  assumed  complex  reduced f r e -  
quency,  and  an  eigenvalue  problem is solved  to   determine the roo t s  of the  equi l ibr ium 
equat ions.   In   qeneral ,  none of  the   roo ts  match the assumed  reduced  frequency  and a 
matched  condition  must be determined by i te ra t ion .   This   p rocedure  w a s  implemented  by 
modifying  the  solut ion  procedure  used  for   the  t radi t ional  V-g root-finding  technique 
i n   t h e  FAST computer  program of Desmarais and Bennett (1  978). 

Equation  (5) of Desmarais and  Bennett   (1978)  expresses  the  equilibrium  condition 
a t  a f l u t t e r  boundary,  with  motion  neither  growing  nor  decaying,  for  which  solutions 
are obtained i n  the  FAST program.  This  equation  and  program  can be general ized t o  
solve  equation ( 2 2 )  of  Cunningham (1 978)  for  boundaries of s e l e c t e d  3 # 0, (as w e l l  
as f o r  3 = 0). This   genera l iza t ion  is done  by replacing w and k by w ( 1  + is) 
and  k(1 + i t )  throughout the ana lys i s .  The r e su l t i ng   equa t ions  can be p u t   i n  the 
form 

- 
- 

(i = 1 ,  2 ,  3 ,  ..., N) ( 4 )  

where the  generalized  aerodynamic  force  element 
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is  a funct ion of M, k, c, and the planform. The eigenvalues  (one  for  each elastic 
mode 1 

- 

are sought a t  values  of k f o r  which the s t r u c t u r a l  damping g = 0. T rad i t iona l ly ,  
so lu t ions   wi th  g f 0, which are o b t a i n e d   i n   t h e   i t e r a t i v e   p r o c e s s  of f ind ing  a 
matched f l u t t e r   p o i n t ,  have been used as an  indicat ion of t he   approach   t o   f l u t t e r .  
For   the   p resent   s tudy   the   on ly   changes   in   the   equi l ibr iuy   equat ions  ( 4 )  from those of 
Desmarais and  Bennett  (1978) are the f a c t o r  of ( 1  + is) in   the   second term and  the 
A which are now funct ions  of r;. - - 
i j  ' 

A Rational  Function  Approximation (RFA)  of Unsteady Aerodynamic Forces 

Sevar t  ( 1975),  Roger ( 1  977) ,  and  Abel ( 1979)  described a mathematical  technique 
used in   cont ro l   theory   for   approximat ing  the unsteady  aerodynamic  forces  in  the 
general  s-plane  based on t h e   f o r c e s   f o r  simple harmonic  motion. The technique i s  
ou t l ined  as follows : 

1 .  Beginnins  with simple harmonic  motion,  each  individual  generalized-force 
matrix  element of equat ions ( 4 )  is ca l cu la t ed   fo r  a series of values of i k  

( n o t e   t h e   d i s t i n c t i o n  between the  modal index i ( i n  A ) and the  imaginary  uni t  
i E v-1 ( i n   i k ) ) .  

Ai j - 
i j  

2. Using temporar i ly   here  the nota t ion  of Abel (1979 1 ,  namely, ;( i k )  to  repre- 
sen t   any   i nd iv idua l  A ( i k )  , t he   va r i a t ion  of the  aerodynamic  forces is approximated 

by a r a t iona l   func t ion  (RFA) with real c o e f f i c i e n t s  of the form 

- 
i j  

A '  ( ik)A 
Q ( i k )  c1 A. + ikAl + (ik)2A2 + 2 ik + 

m 

m=3 m- 2 

n 

3.  Using known values  of Q a t  a sequence of a t  least  four  values of  k, a 
l ea s t - squa re -e r ro r   so lu t ion   fo r   t he  real  Coeff ic ien ts  A. t o  A6 is ca lcu la ted .  
(The  resul t ing  approximations  can be compared with  the exact ( input )   va lues  of k 
and a l so   ca l cu la t ed   fo r   i n t e rmed ia t e   va lues  of k.) 

4.  S u b s t i t u t e  the complex q u a n t i t y  s E / V  f o r   i k  i n  equat ion ( 6 )  t o   o b t a i n  

where 



and the  damping ratio (posi t ive  for   decaying  motion)  is 

- 6  5 =" 
2a = c o t  e 

In   t he   p re sen t   r epor t  a l l  t h e   r e s u l t s  from the  RFA were ca lcu la ted   us ing  Bm-2 as 
0.2, 0.4, 0.6, and  0.8. 

RESULTS AND DISCUSSION 

Three f l u t t e r   a n a l y s e s  were performed  using  the FAST program  modified  for grow- 
ing  and  decaying  motion as described  above. The planforms  analyzed,  depicted  in 
f i g u r e  1 ,  a r e  as fol lows:  ( 1 )  a c l ipped- t ip   de l t a  wing, ( 2 )  an  aspect-rat io-f ive 
rectanqular-planform  model, and ( 3 )  a t r anspor t - type   supe rc r i t i ca l  wing. Resul ts  
of the   p resent   ana lys i s ,   us ing   the   qenera l ized   kerne l   func t ion ,  are compared with 
r e s u l t s  of  two approximate  methods  for  calculating  motion-damping  ratios. One of 
these  is t h e   t r a d i t i o n a l  V-g ca l cu la t ion  of Smilg  and Wasserman ( 1  942). The o the r  
is the RFA aerodynamic-force method descr ibed   in   the   p receding   sec t ion .   In  all 
cases  bo w a s  used for   the   re fe rence   l ength  E. 

Clipped-Tip Delta-Wing F l u t t e r  Model 

The c l ipped- t ip   de l ta -wing   f lu t te r  model analyzed is that of the  sample  case 
of Desmarais  and  Bennett ( 1  978 1, and the  planform  and  aeroelast ic   parameters   are  
g iven   there in .  The same model w a s  analyzed a t   s u p e r s o n i c  Mach numbers i n  
Cunningham (1978).  Figure 2 is a p l o t  of speed  index  versus   densi ty   for  M = 0.8. 
Kernel-funct ion  resul ts  are shown a t  cons tan t  damping r a t i o s  5 f o r  harmonic 
motion ( r ;  = O), f o r  growing  motion ( 5  = -0 .02) ,  and for  decaying  motion ( t  = 0.02 and 0.05), a l l  with modal  damping c o e f f i c i e n t s   g i  = 0. For  comparison 
t h e   r e s u l t s  of the  V-g method are   given by the  dashed  curves.   In  the V-g method the  
aerodynamic f o r c e s   f o r  5 = 0 are used, and the  value of g i   ( t h e  same f o r  a l l  
modes i )  corresponds t o  damping r a t i o  -2:. The dashed  curves were the re fo re  com- 
puted  with the c o e f f i c i e n t s   g i  = -0.04  and -0.10 t o   fo recas t   decay ing  motion  and 
w i t h   g i  = 0.04 t o   f o r e c a s t  growing  motion. 

- 
- - 

- 

The f igure   inc ludes  a possible   wind-tunnel   operat ing  curve  for   f ixed Mach  num- 
ber  M and  speed of sound as. The i n t e r s e c t i o n s  of the  operat ing  curve w i t h  t he  
various  boundaries are pro jec ted  down t o  an i n s e t  plot  of 5 and -gi /2   versus  
dens i ty .  To avo id   c lu t t e r ,   on ly   f i ve  of e igh t   p ro j ec t ed   po in t s   a r e   i nd ica t ed  by the  
sho r t -dashed   l i nes .   Th i s   p lo t   r evea l s   fo r   t h i s   ca se   t ha t   a long   t he   i l l u s t r a t ed   t un -  
nel   operat ing  curve  near  the f l u t t e r   c o n d i t i o n ,  the g rad ien t  of damping r a t io   w i th  
r e spec t   t o   i nc reas ing   dens i ty  is only  about  half  as s t eep   fo r   t he   co r rec t  aerodynam- 
i c s  (r v a r i a b l e )   a s  it is for  simple  harmonic  aerodynamics (4 = 0); thus  the  correct  
aerodynamics  predict a less abrupt   approach   to   f lu t te r .  

- 

Figure 3  shows curves of the  speed  index  for   constant  damping r a t io   ve r sus  Mach 
number f o r  M ranging from 0.5 t o  0.9. The values of speed  index from f igu re  2 
f o r  p = 0.002378 s l u g / f t 3  are included. A t  M = 0.5, t he re  is very l i t t l e  d i f f e r -  
ence  between the  sol id-curve and the dashed-curve  predictions of speed  index  for  the 
two damping ratios analyzed, which are above  and  below t h e   f l u t t e r  boundary. As M 
increases  toward  0.9, the two p red ic t ions  become more d i f f e ren t ,   w i th   t he   p re sen t  
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variable-:  aerodynamics  predicting a lower rate of change  of  damping r a t i o   v e r s u s  
speed  index a t  a given Mach number than  does  the V-g ana lys i s   wi th  r; = 0 and 
v a r i a b l e   g i  . 

- 

Aspect-Ratio-Five  Rectangular-Planform Model 

Aerodynamic-force  results.-  Doggett,  Rainey,  and Morgan (1959)   t e s t ed   t h i s  model 
a t  s e v e r a l  Mach numbers. Yates e t  al .  (1982) reported r e c e n t   f l u t t e r   a n a l y s e s  via 
t w o  subsonic  aerodynamic  programs  and compared t h e   a n a l y t i c a l  and experimental  
r e s u l t s   i n   f i g u r e s  14 to 16 t he re in .  One of the  programs  used w a s  the  unmodified 
FAST program of Desmarais and  Bennett  (1978) . Three  bending  and t w o  t o r s ion  modes of 
a uni form  cant i lever  b e a m  were u t i l i z e d .  

With the  present  modified FAST program,  aerodynamic  forces were c a l c u l a t e d   f o r  
t h ree   decay   r a t io s ,  namely, = 0 and fO. 1 ,  and f o r  a range of reduced  frequencies 
k from 0 to  0.228. (The f lu t t e r   expe r imen t s  had values of k ranging from 0.047 
t o  0.1 02. ) For one of the  experimental  Mach numbers, M = 0.904, two of the  general-  
i zed   fo rces  and A22 are p l o t t e d   i n   f i g u r e  4. The kerne l - func t ion   resu l t s  are 

ind ica t ed  by "K" i n   t he   f i gu re .   F igu re  4 (a )  shows d e s c r i p t i v e l y  termed  the 

"weighted  twisting moment due to first-torsion-mode  vibration." The curve  for   har-  
manic motion, 5 = 0, r e f l e c t s   t h e   e f f e c t s   i n d u c e d  by t h e   p a s t   h i s t o r y  of constant-  
amplitude  motion,  and  the moment lags   in   phase  behind  the  tors ional   def lect ion.  The 
negative  imaginary par t  i n d i c a t e s   t h a t   t h i s  moment of i t s e l f  acts t o  damp ou t   t he  
f i r s t   t o r s i o n  component of motion. The p o s i t i v e  real  p a r t   i n d i c a t e s   t h a t   t h e  moment 

- 
A1 2 

- 

A221 
- 

- 

- 
acts to  inc rease ,  or diverge,   the   tors ional   displacement ,  and  thus  to decrease 

t h e   f i r s t   t o r s i o n a l   f r e q u e n c y  as the dynamic pressure   increases .  The curve   for  
5 = 0.1 r e f l ec t s   t he   e f f ec t s   i nduced  by a p a s t   h i s t o r y  of exponentially  decaying 
motion,  while  the  curve  for r; = -0.1 r e f l ec t s   t he   e f f ec t s   i nduced  by a past h i s -  
t o r y  of growing  motion. The three   vec tors  from t h e   o r i g i n   t o  the p o i n t s   f o r  
k = 0.1 14 show tha t   t he  moment A lags   the  tors ional   displacement  a l i t t l e  more 

for  decaying  motion and a little less f o r  growing  motion  than it does for   cons tan t -  
amplitude  motion. Thus t o   t h e   e x t e n t   t h a t   t h e  wing t o r s i o n a l  motion  component i n f l u -  
ences   the   overa l l   f lu t te r   mot ion ,  the v a r i a t i o n  of t he   l ag  of the moment A with 

5 c o n t r i b u t e s   i n   t h e  same sense as 4; t h a t  is, decaying  motion is accompanied  by  an 
increased  decay-producing moment, and  growing  motion  by a decreased  decay-producing 
moment. For  comparison  the  plus (+) symbols were computed  from equat ion   (7) .  The 
seven   coe f f i c i en t s  of the FtFA of equat ion  (7)  were computed  by s u b s t i t u t i n g   t h e  

- - 
- 

2 2  

- 
22 - 

A2 2 
fo r   t he   f i ve   va lues  of k with r; = 0 in to   equat ion  (6). The RFA r e s u l t s  com- 

- 

pare f avorab ly   w i th   ke rne l - func t ion   r e su l t s   i n   t h i s   app l i ca t ion .  

Figure  4(b)  shows A1 2, the weighted l i f t  due to  f irst-torsion-mode  motion 
- 

( n o t e   t h a t   t h e   h o r i z o n t a l  scale begins a t  24). A s  wi th   the moment A 2 2 #  t h i s   l i f t  

q u a n t i t y   d i s p l a y s  more phase  lag  with  decaying  motion,  and less phase  lag and  even 
a phase  lead  with  growing  motion i n  comparison to  constant-amplitude  motion. A s  i n  
f igure  4(a)  the  comparison  between  kernel-function and RFA r e s u l t s  is good. 

- 
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F l u t t e r  and damping-ratio  boundaries.-  Next the f l u t t e r  boundary  and s e l e c t e d  
dampinq-ratio  boundaries  for  growing  and  decaying  motion  near  the  flutter  boundary 
were c a l c u l a t e d   f o r  this four-percent- thick  rectangular  model. This was done f o r  
four  of the  Mach numbers,  namely, M = 0.756, 0.801,  0.856, and 0.904, l i s t e d   i n  
t a b l e  I11 of Doggett,  Rainey, and Morgan (1959). The model p rope r t i e s  from t h e i r  
table 1 (a) f o r   t h e   f i r s t  and  second  bendinq  and f i r s t   t o r s i o n  modes were used; how- 
ever,   because  the modal  damping c o e f f i c i e n t s   g i   f o r   f i r s t  and  second  bending modes 
of the four-percent-thick wing are miss ing ,   those   coef f ic ien ts   for   the   s ix-percent -  
t h i c k  wing were used  from t a b l e   l ( a ) .   C a l c u l a t e d  mode shapes  for  a uniform  cant i le-  
ver beam with midchord cen te r  of g r a v i t y  and elastic axis were used.  Moreover, the 
next  two high  f requency  calculated modes, namely,  second t o r s i o n  and third  bending,  
were included  to  ensure  convergence of results wi th   r e spec t   t o   t he  number  of modes. 
For each of the   four  Mach numbers t h e   d e n s i t y   a t   t h e   e x p e r i m e n t a l   f l u t t e r   p o i n t  w a s  
used. 

Figure 5 shows f l u t t e r  boundary ( f  = 0) as the f l u t t e r  speed  index (V/bowa\jSi) 
p l o t t e d   a g a i n s t  Mach number. The higher  and  lower boundaries are f o r  5 = -0.025 
and 0.025 respec t ive ly .  The comparison  points from the RFA of equat ion ( 7 )  are very 
close to   t hose  from the   kerne l   func t ion .  

- 

Two-Dimensional Wing Sect ion 

Ea r ly   s tud ie s  of t he  DAST h igh-aspec t - ra t io   t ranspor t  wing  model (see  the  fob-  
lowing  section)  produced  unexpected wavy and looping  curves of the complex general-  
i zed   fo rces   a s   func t ions  of reduced  frequency  for  decaying  motion.  This  behavior 
cas t   doubt  on the  adequacy of the computational  process,  including  the  convergence 
wi th   respec t  t o  the  downwash col locat ion  order .   Since  col locat ion  order   can be 
extended  very  high  €or  two-dimensional  flow,  aerodynamic  forces were s tud ied   fo r   t he  
o s c i l l a t i n g  two-dimensional wing sect ion  to   determine  whether   s imilar   t rends would be 
ca l cu la t ed  and t o  test  for  convergence  with  respect to the  number  of  downwash co l lo-  
ca t ion   po in t s .  Edwards (1979) presents  similar examples of s e c t i o n   l i f t  due t o  
plunging and p res su re   d i s t r ibu t ions   r e su l t i ng  from both  growing and d e c a y i n g   a i r f o i l  
motions. 

For the   p re sen t   r epor t   t he   c l a s s i ca l   Poss io   i n t eg ra l   equa t ion   fo rmula t ion  as 
descr ibed   in  Bland ( 1  982) w a s  used. The a s soc ia t ed  computer  program for  harmonic 
motion was genera l ized   to  growing and decaying  exponential  motion.  For  most of 
the  two-dimensional  section  calculations,  64 downwash co l loca t ion   po in t s  were 
used.  Figure 6 shows t h e   s e c t i o n   l i f t  due to   plunging and p i t c h i n g   o s c i l l a t i o n s  
f o r  M = 0.9 and f o r   t h r e e  motion-decay r a t i o s ,  namely, ( 1 )  simple harmonic  motion 
( f  = 0), (2 )  growing  motion  with 5 = -0.1, and ( 3 )  decaying  motion  with 5 = 0.1. 
Resul t s  from both  the  general ized  kernel-funct ion  calculat ion  (denoted "K") and the  
RFA (based on 14 values of k)   a re   inc luded .  The range of reduced  frequency is 
l a r g e ,  from 0 t o  4.0. 

- - 

- 
Figure 6 (  a )  shows A1 1 , t h e   g e n e r a l i z e d   l i f t  due to  plunging. (The plunge 

half-amplitude is the  semichord  length. The kernel-funct ion results f o r  < = 0 
ag ree   r a the r  well with  the RFA r e s u l t s  of equation (7 ) .  The RFA r e s u l t s   f o r  grow- 
ing  motion, 5 = -0.1, also agree  wel l   wi th   the  kernel-funct ion  resul ts .  

- 
- 

For  decaying  motion, < = 0.1, the  RFA of equat ion ( 7 )  is given by the smooth 
- 

dashed  curve.   In  great  contrast  is the  looping  curve of the   kerne l - func t ion   resu l t .  
Certain  values  of k are labeled.  A s  k i nc reases  beyond about 0.9, the   curve 
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f i r s t  develops a wavy behavior,  then a near  cusp,  and  f inally  widening  loops.   This 
unexpected wavy and  looping  behavior  appears  for  values  of k t h a t  are w e l l  beyond 
almost  any wing f l u t t e r ,   b u t  which  might be reached   for   cont ro l - sur face   f lu t te r .  

F igures   6 (b)  and 6 ( c )  show t h e   g e n e r a l i z e d   l i f t  due to  p i tch ing   about   the  
A1 2 
- 

quarter-chord  with  half-amplitude of 1 radian.   Figure  6(b)  shows the  kernel-function 
r e s u l t   f o r  5 = 0 and -0.1 from k = 0 t o  5.0 and f o r  = 0.1 from k = 0 t o  0.5. 
It is apparent that the  seven-term RFA funct ion of e q u a t i o n   ( 7 )   f i t t e d  to  the  
14 values of t h i s   p a r t i c u l a r   d o e s   n o t   r e s u l t   i n  a good f i t .  This  inadequate 

f i t  is due to the   r eve r sa l  of A i n   t he   s e l ec t ed   r ange  of k and to  the least- 

square-error f i t  being  over   too  great  a range of k. An improvement  would be needed 
for RFA app l i ca t ions .  The spread  for  the  three  values  of 5 is as expected  except 
for   the   looping   near  k = 0.5. Figure  6(c)   gives   an  enlarged v i e w  of the  behavior of 

- - 
- 
A1 2 - 

12 

- 
- 

2 
for  the  frequency  range 0.5 < k < 4.5.  The  wavy behavior for 5 = 0.1 begins 

- 

near k = 0.5 and  becomes looping  behavior  for k grea ter   than   about  1 .O . 
As stated above, a l l  t h e   r e s u l t s  shown were ca lcu la ted   wi th  64 co l loca t ion  

po in t s  on the  chord.  Checks were a l s o  made with 32 and 1 2 8  c o l l o c a t i o n   p o i n t s ,  and 
o n l y   i n s i g n i f i c a n t   d i f f e r e n c e s  were found  even to  k = 4.0.  The conclusion is 
reached   therefore   tha t   the   kerne l - func t ion   resu l t s  shown are converged  with  respect 
t o   t h e  number of co l loca t ion   po in t s ,  and that   the   looping  behavior   calculated  for  
decaying  motion  with 5 = 0.1 is a val id   mathematical   resul t .   This   looping  behavior  
occurs   for   values  of k w e l l  above the  range of most  wing f l u t t e r ,   e x c e p t   p o s s i b l y  
con t ro l - su r face   f l u t t e r .  It  may he applicable t o   g u s t   a n a l y s i s   t h a t   e x t e n d s   t o   h i g h  
values of  k. 

- 

The DAST ARW-1 High-Aspect-Ratio Swept Wing 

The most realist ic model analyzed  here is  the DAST ARW-1 (from  Drones f o r  Aero- 
dynamic  and S t ruc tu ra l   Tes t ing ,   ae roe la s t i c   r e sea rch  wing 1 ) ;  see Murrow and  Eckstrom 
(1979). The planform  analyzed is shown i n   f i g u r e  1 .  It is es sen t i a l ly   t he   p l an fo rm 
shown i n   f i g u r e  2 of Newsom and  Pototzky  (19821,  but no aerodynamic  effects  of hori-  
zon ta l   o r  vertical  t a i l  su r faces  or of a fuselage are included. The 12 spanwise 
symmetric mode shapes  and  frequencies employed are those   ca lcu la ted  for t h e   o r i g i n a l  
DAST ARW-1 wing v i a   t h e  NASTRAN' f i n i t e - e l emen t   ana lys i s   t ha t  w a s  r e p o r t e d   i n  Newsom 
and  Pototzky  (1982).  These modes c o n s i s t  of 2 r ig id -body   (ve r t i ca l   t r ans l a t ion  and 
p i t c h )  and t h e   f i r s t  10 elastic modes, not  including  any  aileron  motion. The a i l e r o n  
hinge is t r e a t e d  as locked   (no   a i le ron   ro ta t ion) .  

Aerodynamic-force r e s u l t s  .- Figure 7 shows the  x55 from  kernel-function 
r e s u l t s  and the RFA (based on nine  values  of k) f o r   t h e  damping r a t i o s  5 = 0, f0.1, 
and  f0.577  (tan(&3O0))  for 0 < k < 1 .O and M = 0.8. M o d e  5 ( t h e   t h i r d  elastic 
mode),  although  strongly  coupled, is judged to  be best descr ibed as " f i r s t   t o r s ion .**  
The o r i g i n a l  ARW-1 wing descr ibed by  Edwards (1979) and N e w s o m  and  Pototzky  (1982) 
e x p e r i e n c e d   f l u t t e r   d u r i n g   f l i g h t   t e s t i n g  a t  k * 0.16. 

- 

~ ~ ~ ~ ~ ~ ~ 

2NASTRAN is a regis tered  t rademark of the  National  Aeronautics and  Space 
Administration. 
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The looping  behavior of the   kerne l - func t ion   resu l t   fo r  5 = 0.577 is  l i k e  the 
looping of the  two-dimensional case desc r ibed   i n  a preceding  sect ion and is bel ieved 
to  be a v a l i d   r e s u l t .  The RFA resu l t   ag rees   w i th   t he   ke rne l - func t ion   r e su l t   excep t  
f o r   t h e   h i g h l y  damped motion (4 = 0.577) a t  values  of k about 0.2 and h igher ,  
e s p e c i a l l y   f o r  k higher   than 0.3. 

- 

Flu t t e r   ana lys i s   r e su l t s . -  The present f l u t t e r   a n a l y s i s  employs the subsonic 
kernel-function  aerodynamics  generalized to  growing  and  decaying  motion. Newsom 
and  Pototzky  (1982)  reported the f l u t t e r  and p r e f l u t t e r  results obtained  based on 
doublet- la t t ice   aerodynamics  for  simple harmonic  motion  and e x t r a p o l a t i o n   i n t o   t h e  
complex  s-plane  via  the RFA. 

The technique of s t rengthening  the  analyt ical   aerodynamic  forces  by mult iplying 
by t h e   r a t i o  of wind-tunnel s ta t ic  l i f t   t o   t h e   a n a l y t i c a l  s tatic l i f t  employed  by 
Newsom and Pototzky  (1  982) is used i n  t he   p re sen t   ana lys i s .  The upper  curve of 
C versus  M i n   f i g u r e  8 he re in  is from f i g u r e  17 of Byrdsong  and Hal l issy  (1979)  
La 

and is for  the  complete model inc luding   the   hor izonta l  tail. Since  the  analysis   here  
i s  of the  wing only,  the  second  curve of f i g u r e  8 w a s  obtained from the   t a i l -o f f   da t a  
( p l o t s  of CL vs. a) of f i g u r e s  11 ( a )  to l l ( e )  of Byrdsong  and Hal l issy  (1979) .  
The lowest  curve of f i g u r e  8 is from the  kernel-funct ion program using program- 
d e f a u l t  downwash co l loca t ion  a t  6 chord s t a t i o n s  on each of 1 2  span   s ta t ions .  The 
d i f f e rence   i n   pe rcen t  from the bottom (ana ly t i ca l )   cu rve  up to  the   t a i l -of f   exper i -  
men ta l  curve is i n d i c a t e d   f o r   s e v e r a l  Mach numbers; t h i s   d i f f e r e n c e  w a s  used t o  
s t rengthen  the genera l ized   force  matrix i n  the f l u t t e r   a n a l y s i s .  

F l u t t e r   s t a b i l i t y  w a s  analyzed a t  Mach numbers  from 0.70 up t o  0.82 f o r  
15000 f e e t  and  up to 0.94 f o r  25000 f e e t .   D e n s i t i e s  and  sound  speeds were used  from 
the  U.S. Standard  Atmosphere,  1962.  Figure 9 ( a )   f o r  15000 f e e t  and f i g u r e   9 ( b )   f o r  
25000 f e e t  show the ca l cu la t ed  damping ratio 5 and associated  f requency f ver- 
sus  Mach number. The c i r c l e s   a r e  the experimental   values   that   appear   in   f igures  8 
and 10 of Newsom and Pototzky ( 1982 ) , and t h e   f l i g h t   f l u t t e r   p o i n t  from t h e i r   f i g -  
ure  10 is shown by the  arrow. The good c o r r e l a t i o n  of the   p resent   ana lys i s  and 
experiment is evident .  The a n a l y t i c a l   r e s u l t s  of Newsom and  Pototzky  (19821,  based 
on doublet- la t t ice   aerodynamics  with  the  s t rengthening of t h e i r   f i g u r e  5, are given 
by the  dashed  curves. As can be observed,  these results are  comparable  to  those of 
the   p resent   ana lys i s  and to  the   f l igh t   exper iments .  

- 

CONCLUDING REMARKS 

The subsonic  kernel  function  has been genera l ized  to  the  s-plane  for  growing and 
decaying  oscil latory  motion. The func t ion  w a s  s u b s t i t u t e d   i n t o  a f l u t t e r   a n a l y s i s  
program, and that program was also  adapted  throughout to obta in  the des i r ed   so lu t ions  
for  constant-damping-ratio  boundaries,   including  the  usual  zero-decay  f lutter bound- 
ary.  A ra t ional   funct ion  approximation (RFA) used in   control   theory  for   approximat-  
ing  s-plane  aerodynamic  forces was used  for some comparisons. 

For the cases analyzed,  the RFA aerodynamics  gave  (or  could  give ) very good 
agreement  with  the  s-plane  subsonic-kernel-function results f o r   t h e  lower  reduced 
f r equenc ie s   t ha t   cha rac t e r i ze  wing f l u t t e r .  But for  combinations of higher  damping 
r a t i o s  and of h ighe r   f r equenc ie s   t ha t   o f t en   cha rac t e r i ze   con t ro l - su r face   f l u t t e r ,   t he  
RFA aerodynamics  did  not  follow  the  looping and s p i r a l i n g   k e r n e l - f u n c t i o n   r e s u l t s .  
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For a c l ipped- t ip   de l t a -wing   f l u t t e r  model, the  s-plane  kernel  function  pre- 
d i c t ed  a less s t eep   g rad ien t  of damping ratio versus   dens i ty   as   the   f lu t te r   boundary  
w a s  approached  and  exceeded  than  did  the  conventional V-g so lu t ion  method tha t   uses  
simple harmonic  aerodynamics. 

An aspect-rat io-f ive  rectangular-planform model was analyzed  for  four Mach  num- 
bers  (M) ranging from  0.756 t o  0.904. Constant-damping-ratio  boundaries, one f o r  
decaying and  one f o r  growing  motion, are   presented  near  the f l u t t e r  boundary. A t  
M = 0.904, s tudy  of the   weighted  tors ional  moment due to   f i r s t - tors ion-mode   osc i l la -  
t i o n  showed that i n  comparison t o  the phase  lagging moment of constant-amplitude 
motion,  decay  produced a greater l a g  of t h a t  moment, while  growth  produced a l e s s e r  
lag .  Thus, i n  terms of this f i r s t   t o r s i o n  moment only,  decay  promotes  faster  decay, 
and  growth  promotes slower decay;   but   for  coupled-mode f l u t t e r   t h e r e  is no assurance 
t h a t   t h e   o v e r a l l   f l u t t e r  motion will show this same e f f e c t .  The RFA aerodynamics 
gave good comparisons for  both  aerodynamic  forces and decay- ra t io   r e su l t s   fo r   t he  low 
reduced  frequencies  studied. 

An ana lys i s  of the DAST A R W - l  t r anspor t - type  wing w a s  a l s o  made. P l o t s  of 
damping r a t i o   v e r s u s   f l i g h t  Mach number were calculated f o r  two a l t i t u d e s ,  15000  and 
25000 f e e t .  Good comparisons of damping r a t i o s  and assoc ia ted   f requencies  were 
obtained w i t h  f l igh t   exper iments  and a l s o  w i t h  a double t - la t t ice   ana lys i s   tha t   used  
the  RFA. The same type of ana ly t i ca l   t r ea tmen t  was used  here as was used i n  a r e f e r -  
enced d o u b l e t - l a t t i c e   a n a l y s i s ;  namely, i n   t he   f l u t t e r   ana lys i s   t he   gene ra l i zed  
fo rces  were s t rengthened by mult iplying by t h e   r a t i o  of the   l i f t - cu rve   s lope  C 

obtained on a wind-tunnel model ( t a i l   o f f )   t o   t h a t  from the  subsonic-kernel-function 
aerodynamics.  For M = 0.8 and  reduced  frequencies  ranging from 0 to 1 .O the  gener- 
a l ized  "f i rs t - tors ion-mode"  forces   calculated from the   kerne l   func t ion   agreed   wi th  
those   ca lcu la ted  from the rat ional   funct ion  approximation (as i n  Abel, NASA TP-1367, 
1979, f o r  example)  except a t  l a rge  damping r a t i o s .  

=a 

A t  reduced  frequencies  higher  than  that  of t he   expe r imen ta l   f l u t t e r ,  an  unex- 
pected  doubling back  and looping of some of the   genera l ized   forces   for   s t rongly  
decaying  motion were found i n   t h e  complex plane.  This  behavior  cast  doubt on the  
adequacy of the  computat ional   process   for   the DAST wing, including  the  convergence 
wi th   respec t   to  the downwash collocation  order.  Therefore  the  two-dimensional-flow 
wing s e c t i o n  w a s  studied  because  the  collocation  order  can be extended  very  high 
and collocation  convergence  can be s tudied .  The classical Poss io   i n t eg ra l   equa t ion  
formulat ion w a s  used. An e x i s t i n g  computer  program f o r  harmonic  motion w a s  general-  
i zed  to growing  and  decaying  motion.  For  moderately  decaying  motion a looping behav- 
ior of t h e   l i f t   f o r c e s  due to bo th   t r ans l a t iona l  and p i t c h i n g   o s c i l l a t i o n s  w a s  found 
a t  higher   reduced  f requencies   for   col locat ion-converged  resul ts .   Because of these 
two-dimensional-flow r e s u l t s  t he  similar behavior  for  the DAST ARW-1 i n   t h ree -  
dimensional  flow a t  high  reduced  frequencies and high damping ra t io  is concluded t o  
be valid.  In  any  event  the  reduced  frequency of f l u t t e r  is w e l l  below t h a t  of t he  
looping  behavior. The RFA aerodynamics  did  not  follow  the  looping  behavior a t  higher  
reduced  frequencies. 

I n  the appendix,  procedures were descr ibed and eva lua ted   for   the   accura te   ca lcu-  
l a t i o n  of t he   ke rne l   func t ion   fo r   gene ra l   s -p l ane  motion. A 12-term exponent ia l  

3Drones f o r  Aerodynamic  and S t ruc tu ra l   Tes t ing  ( D A S T ) ,  aeroelastic research  
wing 1 (ARW-1) . 
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series approximation  in the kerne l - func t ion   in tegra l  w a s  shown to  provide good accu- 
r a c y   f o r  growing  and  decaying  motion in   the  s-plane  extending a t  least 45O on both 
s i d e s  of the imaginary  s-axis  that   represents  harmonic  motion. 

Langley  Research  Center 
National  Aeronautics and  Space  Administration 
Hampton, VA 23665 
February 17,  1984 
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APPENDIX 

CALCULATION OF THE SUBSONIC KERNEL FUNCTION I N  THE s-PLANE 

This  appendix  serves  four purposes. I t  descr ibes   the   a lgor i thm  used   in   th i s  
r e p o r t  to  compute the   ke rne l  of the  downwash in t eg ra l   equa t ion .  It  i n d i c a t e s   i n  what 
p a r t  of the  complex s-plane  the  a lgori thm  gives   acceptable   resul ts .  It  explains  why 
t h i s   p a r t i c u l a r   a l g o r i t h m  w a s  used. It  a l so   exp la ins  why the  algorithm  used, or any 
similar algorithm,  cannot be expected to give good r e s u l t s   f o r  a l l  complex values of 
reduced  frequency. 

The k e r n e l   f u n c t i o n ,   e s s e n t i a l l y  as in   equat ion  (3) but  with k replaced by 
kc, is 

where 

E(M,kC~xo~Yo ) = exp(- ik  x 1 c o  

and  where kc is the complex  reduced  frequency 

kc = k(1  + i t )  

and 

u 1 = (-x 0 + M R ) / ( B ~ I Y , I )  

In   equat ion (A1 ) l e t  

- 
s = i k  = sR/V 

C 
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Then 

where 

and the symbol z Z s lyol is not   the 2 of the main t ex t .   I n t eg ra l   equa t ion  ( A 4 )  
def ines   the   func t ion  F( z )  on ly   fo r  1 a r g  z I < A/2. For  the  multileaved Riemann 
s u r f a c e  I 1 a r g  z I > ~ / 2 ,  F(z) is defined by ana ly t i c   con t inua t ion  as follows: 

where 

U 
1 

F 2 ( z )  = z Jo (1 - exp ( -zu ) du 

By i n t e g r a t i n g  by parts and  applying  equations 12.1.8,  12.1.9 , and 9.1 .5 of 
Abramowitz  and Stegun (1   964)  , one ob ta ins  

F 1 ( Z )  = 1 + z - -  
2 

z H (z) + - z Y1 ( z )  
1 2 

t A 

where HI ( z )  is  a Struve  funct ion and Y1 ( z )  is a Bessel funct ion of the  second 
kind. To show the ana ly t ic   behavior  of F ~ ( z ) ,  expand  exp(-zu)  into a power series 
and   in tegra te  termwise t o   o b t a i n  

16 
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where 

Since 1 gm I is bounded  by  (u1 I m+l / (m + 1 ) , the series (eq. (A61 ) h a s   a n   i n f i n i t e  
r ad ius  of convergence,  and  hence  F2(z) is a n   e n t i r e   a n a l y t i c   f u n c t i o n .   I n  equa- 
t i on   (AS) ,  the St ruve   func t ion  z H ~ ( z )  is also a n   e n t i r e   a n a l y t i c   f u n c t i o n -  The 
Bessel func t ion  z Y1 ( z )  can be expressed 

z Y (z) = - z J ( 2 )  I n  - + G(z) 2 Z 
1 71 1 2 

where z J1 ( z )  and G(z) are bo th   en t i r e   ana ly t i c   func t ions  of z .  Thus  equa- 
t i o n s  (A5)  and (A61 fu rn i sh   an   ana ly t i c   con t inua t ion  of F ( z )  i n to   t he   mu l t i l eaved  
Riemann su r face  I arg z 1 > a/2. 

There are no s i n g u l a r i t i e s   i n  F ( z )  i n  the f i n i t e   p a r t  of the  complex plane 
excep t   fo r  a logari thmic  branch  point  a t  z = 0. The na tura l   b ranch   cu t  of F( z 
is the na tura l   b ranch   cu t  of In  2/2,  namely, the negat ive   rea l   z -ax is .  

The i n t e g r a l  of equat ion (A4) is  evaluated  numerical ly   by  replacing  the  a lqe-  
braic part of the  inteqrand  by  an  exponent ia l   approximation  and  integrat ing t e r m w i s e :  

An approximation of this s o r t  is used fo r   s eve ra l   r ea sons :  ( 1  ) it is a func t ion  of 
a s i n g l e  variable; ( 2 )   o n l y  one  exponential  is needed  per   kernel   funct ion,   contr ibut-  
i n g   t o  economy of ca l cu la t ion ;   (3 )  a modest number of terms provide   near ly   s ing le-  
p rec i s ion  computer-word accuracy  for  harmonic  motion;  and  (4) as descr ibed below, 
good accuracy   ex tends   to   ra ther   l a rge  damping ratios. The c o e f f i c i e n t s   i n  equa- 
t ion  (A7),  namely, 

b = 0.009054814793 

al = 0.000319759140 
a3 = 0.002726074362 
a5 = 0.031 455895072 
a7 = 0.40683801 1567 
ag = -0.417749229098 
al = -0.01 2677284771 

a2 = -0.000055461 471 
a4 = 0.005749557566 
a6 = 0.106031126212 
a8 = 0.7981 12357155 
al = 0.07748071  3894 

- 0.001787032960 a12 - 

17 



APPENDIX 

are f o r  the approximation (eq. (A7) ) designated Dl 2.1 by  Desmarais (1 982).  Then, i f  
q 0, 

1 

where 

e : exp(-bu ) 1 1 

eg  = (eg-1 l 2  ( a  = 2 t o  1 2 )  
- 

The closed-form  inteqrals   that  were used to der ive  e q u  lation (A81 a l l  converge  only i f  
Re(  E I yo I)  > -b.  For -lower  values of Re(  S’I yo I ) , equat ion (A8 1 is deduced by a n a l y t i c  
cont inua t ion .  

Since  approximation Dl 2.1 is va l id   on ly   for   u  > 0, another  approximation  to 
F( . Iyo\)  is  used  for  ul  < 0: 

where 

- 
e  exp(bul ) 1 

- - - 2 ea = (eR,l 1 (R = 2 t o  1 2 )  

Approximation  (A8)  has  poles a t  

- R 
S I I Y , I  = -2 b ( a  = 1 to 1 2 )  

t h a t  is, on the   nega t ive  real Z-axis, and approximation (A9) has poles a t  

s1y0]  = f2 b 
- R (R = 1 to 1 2 )  

18 
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t h a t  is, on the negat ive and p o s i t i v e  real E-axes. The funct ion  F( .'I yo I ) has no 
s i n g u l a r i t i e s   e x c e p t  a branch  point a t  s ]yo I = 0. Thus  one  would expect  approx- 
imation (A81 to  become unusable  as  arg  approaches *IT, and approximation (A91 
to  behave s i m i l a r l y  as a r g  5 approaches  e i ther  *IT o r  0. This is shown i n   f i g -  
u r e   1 0 ( a ) .  These are plots of the real and imaginary parts of K versus  )kc yo I 
f o r  lkcyol = 0 t o  8 and  u1 = 0. The exac t  E ( s o l i d   l i n e  1 is compared with  the 
approximation  (dashed  l ine).  The value of u1 is zero so tha t   t he   exac t  E is 
e a s i l y  computed  from equat ion ( A S ) .  For 8 = a/8,   the   exact  and approximate  curves 
are almost   indis t inguishable .   For  8 = a/4,   the  error is noticeable  but  approxima- 
t i o n  (A7) gives   acceptable   engineer ing  accuracy.   Figure  10(b)  shows the same in fo r -  
mation f o r  an earlier and commonly used  exponential  approximation similar to D12.1 
presented  in  Laschka  (1970) and designated L11 i n  Desmarais (1982). Approxima- 
t i o n  L11 is about as bad a t  8 = a/8  as  approximation Dl  2.1 is a t  8 = a/4. A t  
0 = a/4,  approximation L11 is unacceptable.  The lower p l o t  of f i g u r e  10 ( b )  also 
appears as p a r t  of f i g u r e  1 of Ashley  and Boyd (1 980)  along  with a still earlier 
approximation from Watkins,  Woolston, and  Cunningham (1959)  designated W4 i n  
Desmarais  (1982).  In  Ashley and Boyd (1 9801, the  poor  performance of L11 and W 4  f o r  
8 = 1r/4 is a t t r i b u t e d  to the  proximity of the  poles  of the  computed kerne l .  How- 
ever,  approximation Dl 2. l , which has poles along  the same l i n e  as L1 l , performs  very 
w e l l  a t  8 = w/4. This is so because  the  error  induced  near a pole  is p ropor t iona l  
t o   t h e  magnitude of t h e   r e s i d u e   a t   t h a t  pole, and each  residue is  propor t iona l  to  
the   a s soc ia t ed   coe f f i c i en t  ag . For  approximation L1 1 , max I a i  I = 644.8,  whereas f o r  
approximation Dl 2.1,  maxlag I = 0.798. 

- 

To  sum up, i f  18 I < a/4,  then  equations (A8 1 and (A9 1 ,  which use  approximation 
D l  2 . l ,  give  acceptable  accuracy. A l l  c a l c u l a t i o n s   i n   t h i s  report used  values of kc 
f o r  which ( 8  1 w a s  much less than  a/4 and  were  performed using  approximation Dl 2.1 
excep t   fo r  a few  check c a l c u l a t i o n s   t h a t  were performed  using  approximation D24.2 of 
Desmarais  (1982); and no s i g n i f i c a n t   d i f f e r e n c e s  were found.  Approximation D24 .2  i s  
more accurate   than D l  2.1 and takes   about  twice as long  to  execute.  

It is the  authors '   opinion  that   exponent ia l   approximations,   such  as  D l  2 . I ,  f o r  
which  maxlak) < 1 ,  provide a s a t i s f a c t o r y  way of computing  R(M,kc,xo,yo)  (where 
k = -is) ,  to   the   accuracy  needed for  aerodynamic-force  calculations,  i n  the  half  
of  the complex s -p lane   for  which e i t h e r  1-8 I < a/4  or  18 I < a / 4 ;   t h a t  is ,  f o r  
n / 4  < a r g  s' < 3a/4  and  -3a/4 < a r g  < -a/4.  For  the  remainder of the  complex 
s-plane, I a r g  Z I < a /4   o r  I a r g  .'I > 3a/4,   estimates of E based on exponent ia l  

- 
C 

approximations  to 1 - (u /  11 + u 2 )  become inaccurate  or  uneconomical, or both.  
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Figure 1 .- Three planforms  analyzed.  Linear  dimensions are i n   i n c h e s .  
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Figure 2.- Speed index  versus  density for cl ipped-t ip  delta-wing model. M = 0.8. 
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Figure 4.- Generalized  aerodynamic  forces  for  growing  and  decaying  motions  of  the 
four-percent- thick  rectangular-planform  f lut ter  model  of  Doggett,  Rainey,  and 
Morgan (NASA TM X-79, 1959). 0 < k < 0.228; M = 0.904. 
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Figure 5.- Speed index  versus  Mach number for   four-percent- thick 
rec tangular -p lanform  f lu t te r  model of Doggett,  Rainey,  and 
Morgan (NASA TM X-79, 1959). 
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(a)  A ~ ,  , l i f t  due t o  p lung ing   o sc i l l a t ion .  0 < k < 4. 

Figure 6.- Generalized  aerodynamic  forces for  growing  and 
decaying  motions  of a two-dimensional a i r f o i l   s e c t i o n .  
M = 0.9. 
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(b) l i f t  due t o  p i t c h i n g  a t  quarter-chord. 0 < k < 4. (See d e t a i l  on 
f i g .  6(c).) 

Figure 6.- Continued. 
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(c)  f o r  0.5 < k < 4.5 with a d d i t i o n a l   k e r n e l - f u n c t i o n   r e s u l t s  
f o r  = 0.1. 

Figure 6.- Concluded. 
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Figure 7.- Generalized  force  for  growing and  decaying  motions of the 
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DAST ARW-1 wing. M = 0.8; 0 < k < 1 .O. Mode 5 is "first torsion." 
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Figure 8.- Var ia t ion  of l i f t - c u r v e   s l o p e  wi th  Mach number. The two experimental  
curves are from  Byrdsong  and  Hallissy (NASA TP-1360, 1979).  
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(a) Altitude = 15000 feet. 

Figure 9.-  Flutter-mode damping r a t i o  and frequency  versus Mach number 
for the DAST ARW-1 wing a t  t w o  a l t i t u d e s .  
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